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K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a
prenylated, membrane-associated GTPase protein that is a critical
switch for the propagation of growth factor signaling pathways to
diverse effector proteins, including rapidly accelerated fibrosar-
coma (RAF) kinases and RAS-related protein guanine nucleotide
dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS
mutations occur frequently in human cancers and predict poor clin-
ical outcome, whereas germ-line mutations are associated with de-
velopmental syndromes. However, it is not known how these
mutations affect K-RAS association with biological membranes or
whether this impacts signal transduction. Here, we used solution
NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid
bilayer-anchored K-RAS4B and its interactions with effector protein
RAS-binding domains (RBDs). Unexpectedly, we found that the
effector-binding region of activated K-RAS4B is occluded by inter-
action with the membrane in one of the NMR-observable, and thus
highly populated, conformational states. Binding of the RAF isoform
ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B
from the occluded state to RBD-specific effector-bound states. Im-
portantly, we found that two Noonan syndrome-associated muta-
tions, K5N and D153V, which do not affect the GTPase cycle, relieve
the occluded orientation by directly altering the electrostatics of two
membrane interaction surfaces. Similarly, the most frequent KRAS
oncogenic mutation G12D also drives K-RAS4B toward an exposed
configuration. Further, the D153V and G12D mutations increase the
rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B.
We revealed a mechanism of K-RAS4B autoinhibition by membrane
sequestration of its effector-binding site, which can be disrupted by
disease-associated mutations. Stabilizing the autoinhibitory interac-
tions between K-RAS4B and the membrane could be an attractive
target for anticancer drug discovery.

KRAS | nuclear magnetic resonance | lipid bilayer nanodisc | oncogenic
mutation | Noonan syndrome

The K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B)
protein product of the KRAS gene undergoes posttranslational

farnesylation and C-terminal processing, which, in conjunction with
a poly-basic hypervariable region (HVR), targets K-RAS4B to
anionic lipid rafts on the intracellular side of the plasma mem-
brane (Fig. 1A) (1). This localization is essential for K-RAS4B
function and enhances signaling fidelity (2). Although the signif-
icance of membrane tethering of K-RAS4B is well appreciated, a
high-resolution map of how K-RAS4B interacts with the mem-
brane is lacking. Because membrane-anchored RAS presents a
major challenge to crystallization, current structural insights into the
behavior of membrane-anchored RAS have come from a variety of
lower-resolution techniques including in vivo FRET-based studies
(3), fluorescence and infrared spectroscopic studies (4–6), and in
silico models (3). These pioneering studies suggested that the
K-RAS4B GTPase domain adopts certain preferred orientations

on the anionic membrane and that these orientations could be
influenced by the bound nucleotide. Here we present high-resolu-
tion NMR-derived models of the dynamic interactions between
K-RAS4B and the lipid bilayer and how they can be impacted by
disease-associated mutations or interactions with effector proteins.

Results
K-RAS4B Activation State Determines Population of Two Major
Orientations on Lipid Bilayer. Recent developments in solution
NMR technology have made it possible to study integral membrane
proteins and those anchored to membranes (7). To overcome the
inherent challenges associated with solution NMR studies of
membrane-associated proteins, we used selective 13C-labeling of
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the Cδ methyl groups (8) of the 11 isoleucine residues in
K-RAS4B, which produced excellent quality (signal/noise > 100)
1H-13C heteronuclear multiple quantum coherence (HMQC)
spectra with 11 well-resolved peaks, in solution (Fig. S1A) and
tethered to nanodiscs (Fig. 1B). Tethering was achieved by
conjugation of the C-terminal farnesylation site (Cys185) of a
K-RAS4B variant (C118S) lacking a surface-exposed Cys (Fig. S2A)
to a thiol-reactive maleimide-functionalized lipid {1,2-dioleoyl-
sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)
cyclohexane-carboxamide] (PE-MCC)} (9).

All 11 isoleucines are located <4 Å from the protein surface and
are well distributed throughout the protein to provide excellent
probes for molecular interactions. To unambiguously identify re-
gions of the GTPase domain interacting with or in close proximity
to the lipid bilayer, we prepared nanodiscs incorporating lipids
conjugated to the paramagnetic ion gadolinium (Gd3+) and
measured broadening of the K-RAS4B Ile Cδ resonances induced
by paramagnetic relaxation enhancement (PRE) (10). Mapping
the PRE-broadened Ile probes on the structure of K-RAS4B (Fig.
2 A and B and Table S1) revealed that not all of the observed
PRE-derived constraints can be simultaneously satisfied by a sin-
gle interface, indicative of equilibrium between at least two ori-
entations with distinct sites of membrane association.
A comparison of the PRE profiles of the active and inactive

forms of K-RAS4B reveals that Ile36 and Ile139 are the residues
most sensitive to the activation state (Fig. 2A). Ile36 is located at
the C terminus of switch I in close proximity to switch II, and
Ile139 is on the opposite side of the GTPase domain in proximity
to helix-α4, suggesting that nucleotide loading shifts the equi-
librium of membrane association of these two surfaces. To
construct structural models of membrane-bound K-RAS4B and
identify preferred orientations of the active and inactive forms,
we carried out high ambiguity-driven biomolecular docking
(HADDOCK) simulations (11) (Table S2) using distance re-
straints derived from the PRE experiments (10) (Fig. 2 A and B).
The ensemble of models computed by HADDOCK for activated
and inactive K-RAS4B each clearly exhibit two distinct clusters
of orientations (Fig. 2C and Fig. S2B), consistent with orienta-
tional flexibility of the K-RAS4B GTPase domain (6); however,
the relative population of each cluster was dependent on the
activation state (Table S2). In the cluster that predominates in
the GDP-bound form, most of the K-RAS4B helices are oriented
parallel to the membrane, and a surface comprised of the N
terminus of β1 (N-β1), α4, β6, α5, and the loop connecting β2 and
β3 interfaces with the membrane (Fig. 2 C and D). This surface,
located opposite to switch I, is therefore designated the α-interface.
By contrast, the helices are oriented semiperpendicular to
the membrane in the major cluster for activated K-RAS4B-
GMPPNP (a nonhydrolyzable analog of GTP), and the mem-
brane interface is formed by structural elements surrounding
C terminus of switch I, including β-strands 1–3 of the GTPase
domain β-sheet core, α2, and the C-terminal part of α3 (the
β-interface). These results are consistent with previous infrared
spectroscopy data, which showed that the helical trajectories of
K-RAS4B bound to GDP, but not GMPPNP, are mainly par-
allel with the bilayer plane, although the membrane interfaces
were not determined (4, 5).
The structural basis for this change in orientation likely in-

volves the nucleotide-dependent conformational change in switch
II, whereby GMPPNP binding both increases the surface-exposed
positive charge and decreases the negative charge on the
β-interface (Fig. 2D), electrostatically stabilizing the semiperpen-
dicular K-RAS4B orientation (Table S2). Intriguingly, the nucleo-
tide-dependent orientation preference of K-RAS4B (Fig. 2 B and
C) differs strikingly from that of H-RAS [by molecular dynamics
(MD)- and FRET-based studies] (12, 13) and Rheb (by NMR)
(10), where the activated and inactive forms favor helix-parallel
and -perpendicular orientations, respectively. Consistent with
this finding, previous MD simulation studies of K-RAS4B on
neutral membrane bilayers did not recapitulate the H-RAS–
specific orientations (3). Importantly, the RAS isoforms H-RAS,
N-RAS, and even the splice variant K-RAS4A have C-terminal
HVR sequences and lipidation motifs distinct from those of
K-RAS4B (1), as well as isoform-specific substitutions in the
C-terminal lobe of the GTPase domain (14), which likely lead to
different orientational equilibria of the GTPase domain.

A

B

Fig. 1. K-RAS4B signaling at the plasma membrane and the nanodisc lipid
bilayer model for NMR studies. (A) Schematic illustration of K-RAS4B sig-
naling on plasma membrane. (Inset) Schematic of a K-RAS4B:nanodisc
complex. (B) Distribution of eleven isoleucine Cδ throughout the K-RAS4B
GTPase-domain. (Right) 1H-13C HMQC spectra of nanodisc-conjugated
K-RAS4B in the GDP- (Upper) and GMPPNP- (Lower) bound forms.
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Interaction with RAS-Binding Domains Requires K-RAS4B Reorientation
to Expose Effector-Binding Site. To our surprise, the preferred ori-
entation of activated K-RAS4B sequesters the C terminus of switch I
(i.e., the effector-binding loop) at the membrane surface (Fig. S3)
and appears incompatible with binding of effector proteins. Thus,
we examined how the orientation of activated K-RAS4B on the

membrane is affected by interaction with the RAS-binding domain
(RBD) of the rapidly accelerated fibrosarcoma (RAF) isoform
ARAF. Like the RBD of CRAF that is preferentially recruited
to K-RAS4B nanoclusters in cells (15), ARAF-RBD contains a
positively charged patch adjacent to the RAS-binding site (Fig. S4A)
and contains three isoleucine residues well distributed to provide
PRE-based restraints. We reconstituted nanodisc-tethered com-
plexes of isotopically labeled K-RAS4B with ARAF-RBD (total
molecular weight, ∼200 kDa), performed NMR measurements
(Fig. S1B) to deduce PRE distance restraints from the lipid bi-
layer to both K-RAS4B and ARAF-RBD (Tables S1 and S3), and
derived HADDOCK models of the membrane-associated com-
plex. Within this complex, the GTPase domain was found in a
new semiexposed orientation intermediate between the exposed
and occluded orientations (Table S2), which places the cationic
surface of the ARAF-RBD in contact with the anionic membrane
surface (Fig. 3 A–C and Fig. S4B) and reduces the PRE effect on
Ile36, reflecting global reorientation away from the occluded
configuration, as well as Ile46, which suggests the β-interface
rotates away from the membrane on complex formation. Interest-
ingly, the RBD of RAS-related protein (RAL) guanine nucleotide
dissociation stimulator (GDS) possesses an anionic surface and
shifts the orientational equilibrium of K-RAS4B away from the
occluded orientation toward a fully exposed orientation, as evi-
denced by decreased PRE on Ile36 and Ile100, increased PRE on
Ile139, Ile142, and Ile163, and only minor PRE perturbations of the
RALGDS-RBD resonances, whereas reduced PRE on Ile24 and
Ile46 indicate that K-RAS4B adopts an altered exposed orientation
in complex with RALGDS (Fig. S5). These observations strongly
argue that K-RAS4B interactions with different RBDs can lead to
stabilization of distinct GTPase domain/membrane orientations that
vary depending on the nature of the effector (Fig. 3C). K-RAS4B
complexes with other RBDs remain to be investigated, including the
RBD of PI3 kinase, which has been challenging to express in a
soluble form. The probability of forming productive complexes with
various effector proteins would be expected to depend on the dy-
namic conformational equilibrium of K-RAS4B on the membrane
and correlate inversely with the transient population of the occluded
orientation. Based on the intimate engagement of membranes by
K-RAS4B in multiple orientations, we postulate that K-RAS4B
signaling output might be altered by mutations that remodel the
membrane orientational equilibrium.

Disease-Associated Mutations Relieve Effector-Binding Site Occlusion.
We then sought to address whether oncogenic mutations of
KRAS affect the membrane orientation. Generally, oncogenic
K-RAS mutants, such as G12D, are known to increase GTP
loading, thus leading to hyperactivation of RAS signaling path-
ways (16). Here we unveiled that the K-RAS4B G12D mutation
markedly releases the effector-occluded configuration, as evi-
denced by reduced PRE broadening of Ile21/Ile36 and increased
broadening of Ile139/Ile163 (Fig. 4A), suggesting that oncogenic
mutations could alter the normal function of RAS proteins
through multiple actions. Gly12 is not spatially proximal to the
membrane in either orientation (Fig. 4B); however, the G12D
substitution was previously shown to increase the population of a
nucleotide-free–like conformation of RAS-GTP called state 1,
which increases the entropy (i.e., mobility) of the switch I/II and
helix α3 region (17, 18). The enhanced dynamics in the nucleotide-
binding region (19) is most likely responsible for destabilizing the
β-interface. To further investigate whether the state 1 population
influences the membrane orientation, we measured PRE broad-
ening of the state 1-selective K-RAS4B mutant V29G (20). The
V29G substitution is not proximal to the membrane; nevertheless,
the V29G mutant recapitulated the G12D reorientation toward
the exposed state (Fig. S6), indicating that the state 1/2 equilibrium
plays a role in determining K-RAS4B membrane orientation, ap-
parently through allosteric modulation of the β-interface (19).

A B

E

D

C

Fig. 2. Activated K-RAS4B adopts an occluded orientation on anionic
membranes. (A) PRE-induced broadening of K-RAS4B H(13C) resonances by
Gd3+-conjugated lipid incorporated into nanodiscs. PRE effects detected for
each isoleucine residue of K-RAS4B presented as ratios of H(13C) resonance
intensities of K-RAS4B conjugated to nanodiscs in the presence (I*) to those
in the absence (Io) of Gd3+. Residues are grouped according to their location
with respect to the α and β membrane interfaces defined below. Error bars
based on spectral noise. (B) Map of the PRE effect on K-RAS4B Ile-Cδ. Resi-
dues broadened more than 20% are highlighted in red and the remainder in
cyan. (C) PRE-driven models of K-RAS4B-nanodisc complexes (see Materials
and Methods for details). (D) Surface electrostatics of K-RAS4B-GDP (Left;
PDB ID code 4LPK) and K-RAS4B-GMPPNP (Right; modeled from PDB ID code
3GFT). K-RAS4B is oriented to view the occluded interface from the mem-
brane. Blue, positive; red, negative. Surface exposed positive (bold) and
negative charged residues are indicated. Increased exposure of R102 and
reorientation of E63 contribute to a more positively charged occluded in-
terface in the GMPPNP-bound form. (E) Schematic illustration of K-RAS4B
reorientation on GTPase cycling. The α- and β-interfaces are shown with a
helix and an arrow, respectively.
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Our model further predicts that K-RAS4B signaling could
be modulated by mutations that directly alter the membrane
interaction surfaces. Two germ-line KRAS mutations identified
in Noonan and cardio-facio-cutaneous (CFC) syndrome patients,

K5N (21) and D153V (22–24), were shown to induce phos-
phorylation of MEK1/2 more strongly than WT KRAS; however,
the mechanism of their activation has remained elusive. Unlike
oncogenic K-RAS mutations such as G12D, G13D, and Q61H,
neither of these germ-line mutations appreciably altered intrinsic
GTPase activity or nucleotide exchange or sensitivity to GAPs or
guanine nucleotide exchange factors (GEFs) in solution; thus, they
have been classified as mutants whose phenotypes are not ex-
plained by their biochemical properties (25, 26). Intriguingly, we
find that these mutations change the electrostatic surface of the
two main membrane interfaces of K-RAS4B (Fig. 4B). By re-
ducing the positive charge on the occluded β-interface and re-
ducing the negative charge on the α-interface of the exposed
orientation, respectively, our models predict that both the K5N
and D153V mutations would shift the orientational equilibrium
of K-RAS4B away from the occluded orientation (Fig. 4 B and E),
therefore unleashing the membrane-dependent autoinhibition of
K-RAS4B signaling. Indeed, PRE experiments demonstrated that
both mutations reduced the PRE effect on Ile36 and increased
that on Ile139 (Fig. 4A), indicating that mutation-induced surface
electrostatic changes can cause reorientation of K-RAS4B on
anionic membranes. To determine whether the increased pop-
ulation of the binding-competent exposed state enhances in-
teraction of these K-RAS4B mutants with effector proteins, we
used biolayer interferometry (BLI; ForteBio Octet RED96) to
directly measure the binding kinetics of K-RAS4B to immobi-
lized ARAF-RBD. We postulate that the degree of exposure of
the effector binding site will influence the association rate (kON)
of the K-RAS4B–effector interaction. Remarkably, the two
mutations that most strongly destabilize the occluded orienta-
tion, G12D and D153V lead to measurable increases in the
association rates (10% and 20%, respectively) of nanodisc-
tethered K-RAS4B with ARAF-RBD, whereas the mutations
had no significant effect on the association rate of free K-RAS4B
(Fig. 4 C and D and Fig. S7). The K5N mutation, which has a
more subtle effect on orientation, did not have a detectable
effect on the association rates of free or nanodisc-tethered
K-RAS4B, but decreased the dissociation rate in a lipid bilayer-
independent manner (Fig. 4 C and D). Overall, these disease-
associated mutations enhanced the RBD interaction of lipid
bilayer-tethered K-RAS4B by 10–25% (Fig. 4D), suggesting
that perturbation of the conformational equilibrium contributes
to their increased downstream signaling and is a particularly
important factor in the case of D153V. To further delineate the
effect of K-RAS4B membrane orientation on RBD binding, we
rationally designed a Cys mutation that, on conjugation to
PE-MCC, would favor the occluded orientation: A M67C sub-
stitution introduced on the edge of the occluded interface to
avoid spoiling the effector-binding site had no effect on free
K-RAS4B binding to immobilized ARAF-RBD. Interestingly,
this Cys mutant reduced the affinity of nanodisc-conjugated
K-RAS4B twofold (Fig. 4D), presumably by stabilizing the auto-
inhibited occluded conformation through a covalent bond be-
tween Cys67 and PE-MCC.

Discussion
The present data provide, to our knowledge, the first evidence
for release of membrane-dependent autoinhibition as a pre-
viously unidentified mechanism by which K-RAS4B mutations
can activate signaling (Fig. 4E). The extent to which orienta-
tional effects contribute to K-RAS4B G12D signaling in the cell
relative to effects on the GTPase cycle remains to be inves-
tigated; however, the K5N and D153V Noonan/CFC syndrome
mutations suggest that perturbing membrane orientation to un-
leash autoinhibition may alone be sufficient to produce a disease
phenotype. Importantly, KRAS K5N and D153V mutations have
also been detected in lung, stomach, and renal cancers (27, 28),
whereas germ-line and somatic mutations encoding K5E were
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Fig. 3. Occluded K-RAS4B orientation is incompatible with RBD binding.
(A) Effect of interaction with ARAF-RBD on the PRE profile of nanodisc-
tethered K-RAS4B. (Upper) PRE profile of ARAF-RBD Ile-Cδ resonances in the
presence of Gd3+-containing (I*) vs. Gd3+-free (Io) nanodisc-tethered K-RAS4B-
GMPPNP. (Lower) PRE profile of nanodisc-tethered K-RAS4B-GMPPNP (red)
vs. nanodisc-tethered K-RAS4B-GMPPNP in complex with ARAF-RBD (ma-
genta). Residues are grouped according to their location with respect to
the α and β membrane interfaces. (B) PRE-based model of nanodisc-tethered
K-RAS4B in complex with ARAF-RBD. The K-RAS4B:ARAF-RBD complex was
modeled on the basis of homology to H-RAS:C-RAFRBD (PDB ID code 4G0N)
(37), and this complex was docked to the bilayer surface based on PRE-derived
constraints using HADDOCK. The lowest HADDOCK-scored structure within
the major cluster is shown. (C) Schematic illustration of membrane orienta-
tions of K-RAS4B complexed with RBDs of ARAF vs. RALGDS.
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recently identified in CFC syndrome (29) and chronic myelomono-
cytic leukemia, respectively (27, 30).

The oncogenic and RASopathy-associated K-RAS4B muta-
tions examined here relieve a membrane-associated orientation
that occludes effector binding, which may define a new mecha-
nism by which KRAS mutations can enhance signaling (Fig. 4E).
The K-RAS4B orientational equilibrium may further be modu-
lated by (i) protein–protein interactions such as Ca2+/calmodulin
binding to the HVR (1), (ii) posttranslational modifications such
as PKC phosphorylation of Ser181 in the HVR (1) and acety-
lation or monoubiquitinylation of K104 (1) in the β-interface, or
(iii) alterations of the membrane lipid composition. Further
studies are needed to elucidate how the intimate communication
between RAS and membrane may be dynamically regulated by these
regulatory factors. Interestingly switch II is exposed in the major
conformation of the inactive GDP-bound form of K-RAS4B, sug-
gesting it is accessible to activation by RAS GEFs.
Finally, K-RAS4B, a well-validated oncogenic driver for many

cancer types, is a challenging drug target (16). Although some lead
compounds have been identified (31), there are still no clinically
effective RAS inhibitors available. The propensity of K-RAS4B
to associate with the membrane in a manner that occludes its
effector-binding site may reveal a novel and unexplored therapeutic
target at the protein–membrane interface. Our model suggests that
pharmacological modulation of the orientational equilibrium may
be exploited to sequester activated K-RAS4B mutants.

Materials and Methods
Preparation of proteins and nanodisc-tethered protein complexes, NMR
measurements, and BLI assays are fully described in SI Materials andMethods.

NMR- and PRE-Guided Molecular Docking Simulations. All docking simulations
were performed using HADDOCK 2.0 (11, 32) as described previously (10).
Derivation of the full-length K-RAS4B and nanodisc models are described
in SI Materials and Methods. The K-RAS4B: nanodisc [MSP1D1, 80% 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC), 20% 1,2-dioleoyl-sn-glycero-
3-phospho-L-serine (DOPS)] complex was then subjected to energy mini-
mization in CNS before HADDOCK simulations. HADDOCK ambiguous
restraints were generated from the PRE measurements of K-RAS4B tethered
to Gd3+-containing nanodiscs. Because the lateral diffusion rate of DOPC at
room temperature (∼8.2 × 103 nm2/ms) (33) is high relative to T2 relaxation
times of macromolecules (e.g., nanodisc-tethered Rheb ∼30 ms), an as-
sumption was made that the paramagnetic Gd3+ ion conjugated to 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepenta-
acetic acid (gadolinium salt; PE-DTPA) uniformly sampled all positions on the
nanodisc surface (78 nm2) during the time course of the measurement. Thus,
ambiguous restraints were generated between PRE-affected isoleucine res-
idues on K-RAS4B and any lipid headgroup atom on the nanodisc surface.
Isoleucine residues exhibiting peak broadening of >20% were defined as
active, and the adjacent N- and C-terminal residues were defined as passive
residues. For simulation of K-RAS4B-GDP, isoleucines 24, 46, 55, 100, 139,
142, and 163 were defined as active and residues 23, 25, 45, 47, 54, 56, 99,
101, 138, 140, 141, 143, 162, and 164 were defined as passive. For simulation
of K-RAS4B-GMPPNP, isoleucines 24, 36, 46, 55, 100, 139, 142, and 163 were
identified as active residues and 23, 25, 35, 37, 45, 47, 54, 56, 99, 101, 138,
140, 141, 143, 162, and 164 as passive residues. Surface electrostatics of
K-RAS4B were generated by the Poisson-Boltzmann Solver (34–36). The
K-RAS4B:ARAF–RBD complex was modeled by assembling the K-RAS4B model
described above with the NMR structure of ARAF-RBD [Protein Data Bank
(PDB) ID code 1WXM], guided by the H-RAS:C-RAFRBD crystal structure (PDB
ID code 4G0N) (37). In simulations of the complex, isoleucines 24, 36, 46, 55,
100, 139, 142, and 163 of K-RAS4B and isoleucines 54 and 76 of ARAF-RBD
were identified as active residues, and the flanking residues were selected as
passive. To normalize the contribution of both molecules to the K-RAS4B:
ARAF-RBD complex models, ARAF-RBD restraints were weighted more
heavily to compensate for fewer Ile probes. Ambiguous distance restraints
were assigned a range of 2–5 Å. Although the paramagnetic effect of Gd3+

can extend to a 20-Å radius (38), each lipid headgroup on the membrane
surface is only partially (2.5%) occupied by Gd3+-conjugated lipid; thus, a
reduced upper limit of 5 Å was estimated. An upper limit of 2 Å was selected
for isoleucines broadened >50%, as well as K-RAS4B Cys185. Additionally,
the Lys175 at the beginning of the polybasic region was identified as an
active residue. The CNS topology and the parameter files for GDP, GMPPNP,
DOPC, and DOPS were generated using the HIC-UP server (39) and modified
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Fig. 4. K-RAS4B oncogenic and Noonan syndrome mutations relieve the oc-
cluded orientation and alter RBD binding kinetics on lipid bilayer. (A) PRE profiles
of WT K-RAS4B vs. K5N, D153V, and G12D mutants. 1H-13C HMQC spectra are
shown in Fig. S1. Error bars based on spectral noise. Residues are grouped
according to their location with respect to the α and β membrane interfaces.
(B) Location of mutations and Ile36/Ile139 probes on exposed and occluded
K-RAS4Bmodels. (C and D) Relative association rates (kON), dissociation rates
(kOFF), and dissociation constants (Kd) for (C) free K-RAS4B and (D) nano-
disc-tethered K-RAS4B binding to ARAF-RBD. Binding kinetics of K-RAS4B
(analyte) to immobilized ARAF-RBD (ligand) was measured by biolayer
interferometry (Fig. S7). Each kON and kOFF rate was determined using three
concentrations of K-RAS4B. Error bars represent SD. Kd values were
determined from kON and kOFF, and SD was propagated accordingly.
(E) Schematic illustration of K-RAS4B reorientation induced by mutations. The
mutation locations are shown by cyan spheres and changes in net charge are
depicted by ±1. The wavy arrow represents the increased dynamics of the
β-interface associated with the state 1 population of the G12D mutant. The
curved green arrow represents the reorientation.
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according to the data reported for these small molecules in the Automated
Topology Builder (ATB) and Repository (40). The docking protocol was composed
of a 3,000 rigid-body docking stage, where the top 200 ranked structures based
on the HADDOCK scores were refined using semiflexible simulated annealing,
followed by water refinement. The docking protocol was executed with default
HADDOCK script parameters with an additional Powell energy minimization
step of the lipid headgroups before the semiflexible refinement stage.

Cluster Analysis of HADDOCK Models. Pairwise backbone RMSD values were
tabulated for the K-RAS4B G-domain (residues 4–171) after alignment of the
nanodiscs within the same plane and a translational and 360° rotational (in
5° increments) RMSD minimization search that were confined only to
movements within the 2D plane of the membrane surface, as described
previously (10). The K-RAS4B:nanodisc position in each solution was kept
constant during pairwise RMSD calculation. Cluster analysis was performed
on the calculated pairwise RMSD values using a previously described

algorithm (41), setting an RMSD cutoff of 7.5 Å (11, 32) and cluster size
cutoff of 20 structures. The HADDOCK scores of all 200 structures were
plotted against RMSD relative to the global mean structure, defined as the
solution with the lowest average pairwise RMSD to all other 199 solutions.
All structural manipulations and measurements in 3D space were performed
using CNS (42).
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